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 ABSTRACT: The paper presents results of compression tests of perforated thin walled bars of very low slenderness (varying from 1 to 11). 

The samples are made from typical low carbon steel and cut from the standard elements of an existing storage system. Because of the 

elasto-plastic material properties and low slenderness of tested elements, samples are deforming mostly in a local way. Buckling forms are 

generally similar in all samples, although depending on length several variants differing in the form and direction of movement of the side 

walls can be observed. The final geometry of the samples (after reaching certain average strain and unloading) is documented by 

photography and linear dimension measurements giving a good data for calibration of the theory of elasto-plasticity for large deformations. 

Obtained critical forces are compared with the theoretical results obtained using theory of thin walled beams and finite element solutions 

presented on LSCE 2016 and LSCE 2017 seminars. 
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1. INTRODUCTION 

The paper presents results of compression tests of elements presented in 

Fig.1. It is the continuation of work presented on XXII and XXIII LSCE 

conferences: thin-walled bars theory (Refs 6, 9, 10, 11) calculations as 

well as final element method modelling (Refs 1, 2, 18-20) were 

presented in Ref. 7, and in Ref. 8 elastic buckling forms were analysed. 

Some calculations and early experiments were also presented in Ref. 15. 

Fig. 1 Characteristic dimensions of tested elements (Ref. 15) 

For the need of this paper a wide experimental campaign was 

conducted. Because of the availability of the equipment we have 

decided to start with the compression tests of elements of very low 

slenderness ratio and fixed endings (later on the boundary condition 

influence is analysed using FEM model).  

2. DESCRIPTION OF EXPERIMENTAL TESTS 

Elements chosen for testing are presented on Fig.1 and are made from a 

typical low carbon steel (Ref. 13). Tested samples were 50, 100, 150, 

200, 250, 300, 400 and 500 mm long, and were mounted in Instron 

8802 universal testing machine using compressing plates with 5 mm 

fixtures (see Fig. 2). Displacement speed was calculated as 4% of initial 

length per minute and the end of the test condition was displacement 

equal to 10% of initial length. Force and displacement were recorded 

with the testing machine during the test, and after it the chosen 

permanent displacements were measured manually (see Fig.5). 

Fig. 2 Compressing plates with fixtures (Ref. 13) 

Whole process was also analysed using ARAMIS digital image 

correlation system [3]. This part of experiment is not presented in this 

paper. For more information see Refs 13 and 14. 

3. COMPRESSION TEST RESULTS

3.1 Numeration of the samples 

Samples were cut from several elements, and although they should be 

identical, in reality some differences can be seen in the obtained results. 

From each element 2 sets of samples were obtained. The pairs are: (0.x 

and 1.x), (2.x and 3.x.1), (3.x.2 and 3.x.3) and (3.x.4 and 3.x.5), where 

x is the initial length of the sample in centimetres. There are some 

exceptions to this rule: samples 3.5.1 and 3.15.2 are additional samples 

created from leftovers of material, and other samples in these two series 

have their numbers changed because of that (for example, sample that 

should be named 3.5.1 becomes 3.5.2, 3.5.2 becomes 3.5.3 and so on). 

Samples 3.10.1, 3.50.2 and 3.50.3 were cut improperly. 

3.2 Equilibrium paths 

Equilibrium paths obtained during the experiments are shown in Fig.3. 

They are presented without any processing, especially initial fitting 

stages are not cut from the graphs.
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Fig. 3 Equilibrium paths for tested elements of lengths of 5, 10, 15, 20, 25, 30, 40 and 50 cm 

3.3 Critical force as the function of slenderness 

From results presented in section 3.2 critical loads were determined. In 

Fig.4 they are presented as the function of slenderness. Points marked 

with X blue markers are correct values, points marked with red crosses 

are incorrect values, point marked with square was calculated as force 
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corresponding to plasticity limit, and the green line is the overall results 

approximation with the second degree polynomial. 

Fig. 4 Critical force as the function of slenderness 

3.4 Permanent deformation measurements 

Before the test specimen’s initial length l0 was measured. After the test 

destroyed specimens were measured according to the Fig.5. As it can be 

seen, selected measurements were: length (measured independently on 

front and back side of the sample) - l1 and l2, distance between flanges 

in the buckling point - d, distance between the buckling point and the 

end (always the same) of sample - e and permanent deflection - f. 

Results of these measurements are written in the Table 1. Because of the 

differences in buckling forms of samples of different lengths, additional 

clarifications are given at the end of the table. 

Fig. 5 Permanent deformation measurements (Ref. 13) 

Table 1. Permanent deformation measurements 

no. λ 
l0

[mm] 

l1 

[mm] 

l2 

[mm] 

d 

[mm] 

e 

[mm] 

f 

[mm] 

0.5 1.118 52.8 49.9 49.8 82 25.8 15.1 

2.5 1.131 53.4 50.2 49.9 69.3 12.6 13.9 

3.5.1 1.086 51.3 47.5 47.5 69.7 22.6 14.4 

3.5.2 1.048 49.5 46.3 46.1 56.2 19.8 14.7 

3.5.3 1.114 52.6 49.6 49.4 56.1 16.9 14.0 

3.5.4 1.101 52.0 48.4 48.1 54.1 15.6 13.6 

3.5.5 1.118 52.8 49.6 49.4 54.4 11.2 13.6 

3.5.6 1.084 51.2 48.1 47.9 56.6 18.1 14.2 

av.5 1.100 52.0 48.7 48.5 62.3 17.8 14.2 

1.10 2.139 101 92.8 91.9 67.5 38.3 26.5 

2.10 2.154 101.7 93.7 83.1 34.5 44.7 25.3 

3.10.1 2.143 101.2 93.4 81.3 30.5 38.5 22.2 

3.10.2 2.132 100.7 92.0 90.3 47.4 41.0 25.7 

3.10.3 2.175 102.7 94.0 83.4 45.3 42.8 27.1 

3.10.4 2.156 101.8 92.9 80.1 41.4 44.0 25.2 

3.10.5 2.162 102.1 93.7 81.6 36.2 38.2 23.5 

av.10 2.152 101.6 93.2 84.5 43.3 41.1 25.1 

3.15.2 2.982 141 131 132 104 23.7 29.0 

av.14 2.982 141 131 132 104 23.7 29.0 

1.15 3.219 152 137 140 109 79.0 35.9 

2.15 3.221 152 137 139 111 69.2 35.1 

3.15.1 3.221 152 139 139 74.3 75.5 29.1 

3.15.3 3.193 151 137 138 104 70.2 32.8 

3.15.4 3.236 153 140 126 20.5 79.8 28.5 

3.15.5 3.179 150 137 137 102 64.8 31.4 

3.15.6 3.215 152 139 126 16.9 82.2 27.3 

av.15 3.212 152 138 135 76.8 74.4 31.4 

1.20 4.257 201 179 181 151 82.9 48.5 

2.20 4.267 202 178 181 150 86.8 47.3 

3.20.1 4.263 201 179 180 153 89.0 47.9 

3.20.2 4.278 202 178 182 145 87.8 47.4 

3.20.3 4.259 201 178 181 147 93.0 46.9 

3.20.4 4.252 201 183 177 98.1 86.4 37.2 

3.20.5 4.240 200 179 179 152 85.8 47.8 

av.20 4.259 201 179 180 142 87.4 46.1 

no. λ 
l0 

[mm] 

l1 

[mm] 

l2 

[mm] 

d 

[mm] 

e 

[mm] 

f 

[mm] 

1.25 5.315 251 226 226 184 121 55.8 

2.25 5.356 253 227 224 181 127 58.8 

3.25.1 5.322 251 225 226 177 125 56.9 

3.25.2 5.341 252 226 225 180 118 56.1 

3.25.3 5.360 253 227 224 182 116 56.6 

3.25.4 5.328 252 225 224 180 126 56.9 

3.25.5 5.322 251 223 225 178 129 57.3 

av.25 5.335 252 226 225 180 123 56.9 

1.30 6.374 301 260 277 171 118 73.9 

2.30 6.391 302 263 275 176 163 74.9 

3.30.1 6.389 302 268 275 177 128 70.9 

3.30.2 6.406 303 266 279 170 146 72.6 

3.30.3 6.383 301 264 277 172 142 73.2 

3.30.4 6.372 301 262 279 164 140 74.3 

3.30.5 6.368 301 263 275 175 150 72.1 

av.30 6.383 301 264 277 172 141 73.1 

1.40 8.492 401 347 372 147 187 103 

2.40 8.479 400 352 375 146 187 108 

3.40.1 8.494 401 352 375 151 176 105 

3.40.2 8.509 402 340 371 151 183 106 

3.40.3 8.492 401 338 371 149 182 107 

3.40.4 8.479 400 337 371 162 202 106 

3.40.5 8.471 400 350 373 161 213 106 

av.40 8.488 401 345 373 152 190 106 

1.50 10.61 501 427 466 180 217 138 

2.50 10.61 501 436 469 165 270 133 

3.50.1 10.50 496 427 462 170 243 142 

3.50.2 10.59 500 465 420 0.00 219 -77.4 

3.50.3 10.63 502 466 421 0.00 230 -78.9 

3.50.4 10.57 499 443 469 177 212 131 

3.50.5 10.61 501 413 462 174 243 137 

av.50 

10.58 500 429 466 173 237 136 

10.61 501 466 421 0.00 225 -78.2 

10.59 500 427 466 124 233 75.0 

10.59 500 427 466 124 233 107 
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AD d: 

Symmetric – both sides outwards. 

Symmetric – both sides outwards – the material ruptured at the measurement site. 

Symmetric – both sides inwards. 

Asymmetric – both sides in one direction. 

Asymmetric – one side S-shaped, second side inwards – measurement between closest points. 

Asymmetric – one side S-shaped, second side outwards – measurement between furthest points. 

Asymmetric – both sides S-shaped – measurement between furthest points. 

AD l1, l2, d and f: buckling form forced by fine trimming and polishing the ends of the sample . 

AD averages: from all , from all shorter/longer l’s , from absolute values , from not forced , from forced . 

AD l0: not precise cutting (differences of about 2 mm between different corners of the sample) . 

3.5 Photographs of the samples after unloading 

Because of limited length of the paper only selected photographs are 

shown below. Figs 6-8 present samples of three different lengths: 5cm 

samples are generally buckling inwards, 25cm samples are generally 

buckling outwards, and 15 cm samples are the border between two 

buckling forms. 

Fig. 6 Samples with initial length equal to 5 cm. 

Fig. 7 Samples with initial length equal to 15 cm 

Fig. 8 Samples with initial length equal to 20 cm. 

Fig. 9 Samples with initial length equal to 50 cm. 

In Fig. 9 two buckling forms observed in the 50 cm samples can be 

seen: first one with flanges going outwards and second one with flanges 

going inwards. First one is the normal buckling form of samples of this 

length, second one was forced by grinding the ends of the samples. It is 
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interesting, that the maximum forces obtained from grinded samples are 

not distinctly different from the normal ones. 

4. NUMERICAL AND ANALYTICAL RESULTS

Theoretical solutions of the problem were presented in Refs 7, 8, 15. 

Two main methods were used. The first one was finite element method 

modeling using shell elements, elasto-plastic material (Ref. 5) and 

nonlinear procedures. Several variants of this method were used. For the 

second approach the thin-walled bar theory for elastic buckling of long 

bars and Johnson-Ostenfeld approximation for plastic buckling of short 

bars altogether with some ideas from standards (Refs 4, 16, 17) were 

used. The most important results acquired with both methods are 

presented in Fig.10. 

Fig. 10 The comparison of the FEM calculation results to analytical 

solutions derived with application of thin-walled bar theory (Ref. 7) 

5. RESULTS ANALYSIS 

In Fig.11 the experimental results on the critical force (maximum points 

on the equilibrium paths shown in Fig.3) are presented in the form of 

“x” markers. On that basis the green curve being a second degree 

polynomial approximation of obtained results is also plotted. In the 

same graph also the numerical results obtained with application of FEM 

and shell modelling for two different types of boundary conditions 

(fixed and hinged, see Fig.10 and Refs 7, 15 for boundary conditions 

modelling details) are shown (dashed lines with the circles: blue – 

hinged and dark red – fixed). The blue and dark red continuous lines 

also visible in the graph represent the analytical approximations based 

on thin-walled bars theory and Johnson-Ostenfeld curves. Because of 

very low slenderness, the difference between hinged and fixed boundary 

conditions in the analytical approach is very small. From obvious 

reasons presented analytical approach is also quite inaccurate for very 

short elements. It can be also observed, that finite element method 

solution for fixed boundary conditions describes the actual experimental 

results pretty well up to about 20cm of length, but it fails to correctly 

describe it for longer elements. There are two possible reasons of that 

fact. Firstly, for longer elements the assumption, that the tested elements 

have ideally fixed ends, becomes less reasonable. 

However, that reason only is clearly insufficient – the experimental 

results for samples longer than 25cm are lower than the results 

calculated for hinged boundary conditions. In this situation the 

geometry imperfections seem to be the most important reason behind 

the low maximum force values obtained from experiment. 

In case of FEM modelling of the analysed compression tests the 

observed failure mechanisms are predicted with good accuracy. Some 

examples of failure mechanisms predicted with FEM application in the 

form of Huber-Mises stress intensities contour plots on the deformed 

unloaded sample are shown in Figs 12 and 13. In both cases (initial 

length of the sample equal to 50 and 100 cm) the influence of the 

boundary conditions is shown. What is more in case of the sample 50 

cm long with boundary conditions named as “hinged” the predicted 

failure mechanism is very similar to one characterized before and shown 

in Fig. 9 as an exceptional one (the cross section walls after crossing 

maximum point are rotating in each other direction). 

Fig. 11 Theoretical and experimental results comparison 

a) 

b) 

Fig. 12 Exemplary failure mechanisms predicted with FEM application 

(contour plots of Huber-Mises stress intensities on the deformed 

unloaded sample) for 50 cm length sample obtained with different 

boundary conditions: a) fixed, b) hinged (cf. with Fig. 9) 

a) 

b) 

Fig. 13 Exemplary failure mechanisms predicted with FEM application 

(contour plots of Huber-Mises stress intensities on the deformed 

unloaded sample) for 100 cm length sample obtained with different 

boundary conditions: a) fixed, b) hinged 

6. CONCLUSIONS

On the basis of the experimental test results presented in Fig.3 it is 

possible to conclude, that in case of higher slenderness ratio the 

repeatability of the test is quite good (with respect to the maximum 

force value and overall equilibrium path). Having in mind that all 

analyzed samples are rather of a low slenderness value the sample 

behavior is determined not only by its geometry and elastic material 

property but also by plasticity properties (Ref. 6). The characteristic 

failure mechanisms are observed (see Fig. 7, 8 and 9) almost always in 

the same spatial form. The only difference, that can be observed 

between samples of different lengths is the direction of movement of 

flanges. In the elements shorter than 15cm they are moving inwards, in 

the longer ones outwards and elements, that are 15cm long, can buckle 

in both ways (and also some mixed variants). What is even more 

interesting, even after crossing the maximum point in the equilibrium 
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path (critical force value) the overall answers of the compressed samples 

are mostly the same (for the chosen slenderness ratio). Only in case of 

fine trimming and polishing the ends of the longest sample (50cm) a 

different failure mechanism is manifesting on the equilibrium path 

(compare Fig. 3 for 50cm samples 3.50.2 and 3.50.3). In those cases the 

failure mechanisms are shown in Fig.9: in the middle part of the 

compressed element the web is bended outwards and the flanges are 

rotating in each other direction after crossing maximum point, while in 

most of the other cases the web was moving inwards and flanges were 

moving outwards. 

The presented in the Table 1 results on permanent deformation of the 

elements released after the compression test, may be treated as a data for 

verification of large deformation shell theories for elasto-plastic 

materials. Such theories are well developed for the needs of the 

modelling of cold forming technological processes for thin walled bars. 

In Fig.11, the experimental results are shown against the numerical 

results, obtained with application of FEM program ABAQUS with shell 

modelling of the compressed element. It can be seen, that the 

experimental results are laying alongside numerical results obtained for 

fixed boundary conditions only for the shortest elements. Because of the 

less significant meaning of the fixture shown on Fig.2 (and resulting 

from that weakening of boundary conditions) and growing role of 

imperfections, the longer elements are weaker than the numerical 

predictions. Important role of geometry imperfections in thin-walled 

bars is discussed for example in Ref. 12. It seems that for acquiring 

better compatibility of numerical and experimental results, three 

measures should be taken: firstly, joints should be used between the 

testing machine and compression plates, to ensure hinged boundary 

conditions and uniform pressure at the ends of the samples; secondly, 

the calculations should describe boundary conditions more precisely; 

and thirdly, imperfections should be taken into consideration. The tests 

will be continued in the future. 
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